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Abstract. We investigate the effects produced on the diffraction pattern of a dyed nematic thin film
under the action of an optical field and a low frequency AC electric field. For a homeotropically aligned
mixture of the nematic E7 doped with a dichroic dye, a sequence of dynamical regimes of the far field
diffraction pattern is observed. For specific values of the beam’s power, frequency and amplitude of the AC
field, a uniform steady rotational motion (SR) of the pattern sets in with a measured angular velocity
νexp = 2.58 Hz. To account for this and other observed features of the diffraction pattern an analytical
model is proposed. This allows us to describe quantitatively the reorientation of the film, to calculate
some specific structural features of the diffraction pattern, as well as its angular velocity. We find that the
predicted angular velocity νtheor = 5.7 Hz, is in quite good agreement with the measured value.

PACS. 78.20.Nv Thermooptical and photothermal effects – 61.30.Gd Orientational order of liquid crystals;
electric and magnetic field effects on order – 42.65.-k Nonlinear optics

1 Introduction

An intense light wave propagating through a nematic liq-
uid crystal cell (NC) may strongly alter its local optical
properties and may induce a variety of optical responses
of the fluid. In particular, the far field diffraction pattern
produced by a thin, pure, nematic film has been studied
since the early 80’s. In pure nematics it is well known that
an incident elliptically polarized beam may induce a va-
riety of dynamic regimes in the polarization of the beam.
These responses range from a regular motion of the direc-
tor [1–4], to a sequence of torsional oscillations, rotations,
nutation with precession and other phenomena [5–7]. The
response may also be a complex and chaotic dynamics of
the director [8]. In addition to this variety of responses,
it is also well established that the response of the film
may be greatly enhanced by the addition of small amounts
of dichroic dyes. This allows to observe highly nonlinear
optical phenomena with moderate power light sources.
However, even with the doping, the diffraction pattern
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of the NC has always been reported to remain station-
ary [7,9].

In recent work we have extended the scope of these
experiments in two ways [10,11]: first, by doping the ne-
matic with an azoic ink and secondly, by applying a low
frequency electric AC field across the cell plates, in addi-
tion to the incident linearly polarized laser beam. Under
the combined action of these fields, the director’s reorien-
tation of the doped nematic film produced a diffraction
pattern in the far field. It consisted of a countable set of
thick rings around a central bright spot, but blurred in the
periphery of the pattern. The nature of these observations
and the details of the experimental set up were reported in
more detail in references [10,11]. The important point to
stress, though, is that in the presence of both fields the di-
rector’s reorientation produced a diffraction pattern which
exhibits a sequence of dynamic regimes existing for well
defined threshold values of the beam’s power, frequency,
amplitude and root mean square voltage Vrms of the AC
field [10].

In the present work we shall restrict ourselves to the
analysis of one of these dynamic regimes, namely, the
SR regime in which a uniform rotation of the pattern was
observed. Our basic purpose here is to propose an analyt-
ical model that allows us to calculate a diffraction pattern
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possessing some of the qualitative and quantitative fea-
tures of the experimental observations. More specifically,
as will be shown later on, the proposed model describes
the appearance of a rotating structure and predicts an an-
gular velocity which agrees quite well with the measured
one. To this end the article is organized as follows. In Sec-
tion 2, we briefly review those features of the observations
that are relevant for our purpose in this work. Then we
introduce the model and we argue that the space-time
variation of the reorientation of the nematic is coupled to
the heating of the NC through the gradient of the order
parameter of the nematic. We introduce a heating model
which leads to a steady-state temperature equation which
can be solved exactly in analytical form. However, as is
discussed in Section 3, it is sufficient to work with an ap-
proximate temperature profile as a function of the distance
from the center of the beam. We then use this approximate
profile to obtain an analytical solution to the reorientation
equation. For this purpose it will be shown that these solu-
tions exhibit two of the features of the observed diffraction
pattern, namely, the nearly circular rings and the rotating
blurred structure mentioned above. Then we calculate the
angular velocity of rotation of the pattern from this so-
lution and estimate its numerical value for typical values
of the material and experimental parameters. We find a
theoretical angular velocity, νtheo = 5.7 Hz which agrees
quite well with the measured value of the same quantity,
νexp = 2.58 Hz. Finally, we close the paper by discussing
the advantages and limitations of our approach and by
making further critical remarks.

2 System and basic equations

To start with, we review those features of the observa-
tions in the SR regime that will be relevant in the for-
mulation of the theoretical model. In the experiments we
used a mixture of the nematic E7 doped with 0.5% Wt of
R4 dye. This mixture was sandwiched between two ITO
coated glass plates separated by 24 µm spacers. The glass
plates were previously coated with lecithin to achieve a
homeotropic alignment. Then, the NC was illuminated
with a linearly polarized cw Ar laser at 514 nm in nor-
mal incidence configuration. The beam’s transverse pro-
file was Gaussian and it was focused on the sample with
a f = 100 µm convergent lens which produced a beam’s
waist of σ = 31 µm at the focal plane. To control the in-
put power a set of one half wave plates and a polarizer
were used. A beam splitter was introduced into the path
of the beam to monitor its power with a previously cal-
ibrated photodiode. By using a wave function generator
an AC field with a frequency ν = 1 kHz was applied to
the sample perpendicularly to the plates, as depicted in
Figure 1.

With the sample at the focal plane and in the absence
of the AC field, the input power was slowly increased un-
til an intensity of 6.45 mW was reached. At this power
a pattern of blurred, thick, countable, but static diffrac-
tion rings around the central bright spot was observed.
Actually, the blurring of the rings system is an indication

Fig. 1. Schematics of the NC and the applied fields.

Fig. 2. The observed blurred rotating diffraction pattern for
P = 11.93 mW and νac = 1 kHz. The circle identifies the
maximum contrast region MCR.

of a melting process due to the formation of an isotropic
droplet within the path of the laser beam [7,10,11]. Above
this threshold the number of diffraction rings increased
and they became thinner. However, during this processes
the diffraction pattern remained static. When the AC field
was connected at a fixed beam’s power of P = 11.93 mW,
the Vrms of the AC field was increased. It was expected
that the rings would disappear at a definite Vrms, as it
occurs with a pure substance, however, instead it was ob-
served that for Vrms = 17.37 V, a steady rotational (SR)
uniform motion of the pattern sets in. This observation
suggests that the presence of both fields produces a com-
petition of the torques they produce for the chosen geom-
etry, and that this competition prevents the reorientation
of the director until the threshold value is attained. The
number of rings remained constant and a tenuous blurred
rotating vane-structure around the bright central spot and
superposed to the ring pattern, was also observed. How-
ever, the pattern of nearly circular rings started to rotate
with a steady counterclockwise rotational uniform motion
which could be followed at the naked eye. These deformed
fringes produced a region of maximum contrast (MCR)
where the intensity is a maximum in comparison with the
surrounding fringes, as shown in Figure 2.

Focusing on the MCR, its average angular velocity
was measured by placing a photodetector behind a hole
of a 2 mm diameter and at a distance of 30 mm from
the center of the screen. The angular velocity of this
rotating shadowy structure was measured by analyzing
each frame of a recorded sequence yielding a value of
νexp = 2.58 Hz. If these features are maintained until
the Vrms reaches the threshold value Vrms = 26.02 V,
the dynamic regime becomes unstable. Then the angu-
lar velocity is no longer constant and in some cases the
spinning sense even changes abruptly to the clockwise
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direction. Above this threshold other dynamic regimes set
in and some of their features are discussed in more detail
in references [10,11].

2.1 Model

The Gaussian laser beam which is linearly polarized along
the x̂-axis, propagates along the ẑ direction and incides
normally to the film, is of the form

Eopt = Eoe
−(r/

√
2σ)2+i(zk′

z−ωot)e−zk′′
z −α⊥rx̂. (1)

Here Eo is the on axis amplitude, r denotes the distance
from the optical axis of the beam,

√
2σ represents the ra-

dius of the beam’s waist, ωo stands for its frequency and x̂
denotes the unit vector along the x-axis. k′

z and k′′
z are, re-

spectively, the real and imaginary parts of the wave vector
kz along the z-axis; k′′

z ≡ α⊥describes the absorption of
the beam by the medium. The component of the absorp-
tion coefficient of the dye along the radial direction is given
by α⊥. As a consequence, the intensity at a point (r, z) is
given by

I(r, z) ≡| Eopt |2= P

πω2
o

e
− r2

ω2
o
−2α⊥z

, (2)

since r2

σ2 � 2α⊥r and where P is the input power.
On the other hand, the AC field is of the form

Eac = Ese
iωactẑ, (3)

where its amplitude Es ≡ Vrms/d is defined in terms
of the root mean square voltage, Vrms , across the cell of
width d; ωac denotes the angular frequency, ẑ is the unit
vector along the z-axis and i =

√−1. If the polarization of
the optical field remains in the x−z plane, it is reasonable
to assume that the reorientation of the director will also
take place in the same plane. Thus, if we further assume
strong anchoring boundary conditions for the director at
the plates, the director field n̂ will be

n̂ = (nx, 0, nz) = [sin θ(r, φ, z, t), 0, cos θ(r, φ, z, t)] , (4)

where θ is the reorientation angle which is a function of
the cylindrical coordinates (r, φ, z).

The optical field gives rise to two main effects which
are about two orders of magnitude larger than for a pure
nematic, namely, it induces a torque that reorients the di-
rector and it produces a significant thermal heating, which
changes the nonlinear part of the refractive index due to
the large absorption coefficients of the dye. As mentioned
earlier, the blurring of the rings in the observed pattern
is an indication of a melting process, due to the forma-
tion of an isotropic droplet within the path of the laser
beam. To verify this issue we carried out a pump-probe ex-
periment. A linearly polarized second (probe) laser beam
(He − Ne, λ = 636 nm, PHe−Ne = 3 mW), parallel to the
pump beam, was also focused on the sample. By inserting
a filter to block the green pump’s beam, we observed a

Fraunhoffer diffraction pattern characteristic of a circular
aperture. If the polarization of the probe beam is changed
by 90◦, the pattern remains unchanged, indicating that it
is produced by an isotropic droplet. The diameter of the
probe beam was 19.95 µm and the diameter of the droplet
was 21.89 µm at a power of 7.13 mW.

When the number of rings in the SR remains constant,
we expect that the director, n̂(−→r , t), is aligned with the
optical field. Furthermore, as it is well known in the guest-
host effect [12], we also expect that the long axis of the
dye molecules will be oriented in the same direction, if
they are in their ground state. However, since the dye’s
dichroism is positive, the absorption along the direction of
propagation of the beam (z) should be larger than along
the transverse directions.

2.2 Heating model

Let us assume that the heating process induced by the
beam reaches a steady-state whose temperature profile
may be described by an equation of the form [13]

∇ · (←→κ · ∇T ) = −α⊥I(r, z), (5)

where the heat conductivity tensor ←→κ is of the form

←→κ =

⎛

⎝

κ⊥ 0 0
0 κ⊥ 0
0 0 κ‖

⎞

⎠ (6)

and κ‖ and κ⊥ are its parallel and perpendicular
components. As boundary conditions we assume that the
temperature and normal component of the heat flow are
continuous at the substrate-nematic interfaces. The tem-
perature dependence of both, the heat conductivities and
the absorption coefficient α⊥ are neglected.

Note that if equation (1) is integrated over a volume V
containing the whole beam and the width of the cell, it can
be rewritten as

κ⊥

(

∂T

∂r

)

r=0

+ κ‖

(

∂T

∂z

)

z=0

− κ‖

(

∂T

∂z

)

z=d

=

− α⊥
∫

V

I(r, z)dV, (7)

which shows that the components of∇T relevant to define
the temperature profile are ∂T/∂r and ∂T/∂z. However,
inside the beam, i.e., for r ≤ σ, the Gaussian profile of the
beam implies that

∂T

∂z
� ∂T

∂r
, r ≤ σ, (8)

whereas for r ≥ σ,
∂T

∂z
� ∂T

∂r
. (9)

Now, for the geometry under consideration equation (5)
reads

κ⊥

(

∂2T

∂r2
+

1
r

∂T

∂r

)

+ κ‖
∂2T

∂z2
− α⊥I(r, z). (10)
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By following the method proposed in references [13,14],
to solve equations of this form, the temperature rise
can be described analytically in terms of the Hankel-
transformation of the temperature field

T (r, z) ≡
∫ ∞

0

λ˜T (λ, z)J0(λr)dλ, (11)

as

α2
⊥κ‖

∂2

∂z2
˜T (r, z)− λ2κ⊥ ˜T (r, z) =

− Pα⊥
2π

e−α⊥ze−
λ2ω2

o
4 , (12)

where J0 is the first order Bessel function. For the above
mentioned boundary condition the solution of this equa-
tion reads

˜T (λ, z) =
Pα⊥
2πκ⊥

e−
λ2ω2

o
4

λ2 − (α⊥ξ)2

×
(

e−α⊥z + G1e
λz
ξ + G2e

−λz
ξ

)

, (13)

where we have used the following abbreviations ξ ≡
(

κ‖
κ⊥

)1/2

,

G1 ≡ (1 + k) e−α⊥d + (1− k) e−
λd
ξ (1− α⊥ξk/λ)

(1 + k)2 e
λd
ξ − (1− k)2 e−

λd
ξ

, (14)

G2 ≡ α⊥ξk/d− 1

(1 + k)3 e
λL
ξ

{[

(1 + k)2 e
λd
ξ − (1− k)2 e−

λd
ξ

]

− (1− k)
[

(1 + k) e−α⊥d + (1 + k) (1− α⊥ξk/λ) e−
λd
ξ

]}

,

(15)

and

k ≡
2
√

κ‖κ⊥
κs

. (16)

Although in principle it is possible to obtain an exact an-
alytical expression for the temperature profile T (r, z) by
calculating the inverse transform of the function ˜T (λ, z)
given by equation (13), this calculation it is not easy to
perform. However, it can be verified that a good approxi-
mation for the temperature profile just outside the beam
for zo = 30 µm, may be represented by

Tapp(r, zo) =
A1

A2 + r2
, (17)

where A1 and A2 are adjustable parameters, since the
Hankel transform of this function, namely,

˜Tapp(λ, zo) = A1K0(A2λ), (18)

where K0(A2λ) is the modified Bessel function of order
zero, is close to the exact function ˜T (λ, zo) for λ ∼ 2×104,

Fig. 3. ˜T (λ, zo) ( ) and ˜Tapp(λ, zo) (−−−) as functions of
λ for zo = 30 µm and for typical values of the material and
experimental parameters.

which corresponds to distances of 2π/λ ∼ 300 µm which
are clearly greater than σ. For example, if we take the fol-
lowing typical values of the required material and exper-
imental parameters [11,10,13], namely, P = 11.93 mW,
α⊥ = 2.57 × 104 m−1, κ⊥ = 10−1 W/◦K m, κ‖ = 2κ⊥,
κs = 3.7κ‖, d = 24 µm, σ = 31 µm, and if we set
A1 = 10−3 ◦ K m2 and A2 = 2 × 10−6 m, the graphs
of the functions ˜T (λ, zo) and ˜Tapp(λ, zo) are, indeed, quite
close to each other within the range 104 < λ < 2× 104, as
shown in Figure 3.

3 Order polarization

A nematic liquid crystal is characterized by a tensorial
order parameter Qij = S (ninj − δij/3) with modulus S.
In connection with the problem of determining the orien-
tation of n̂ at a nematic-isotropic interface, it has been
suggested long ago that a gradient of S at constant n̂ may
induce an electric polarization [15,16]. However, a more
complete analysis of the connection between the order po-
larization and the spatial variations of S in liquid crystals
was given more recently by Barbero et al. [17], who es-
tablished how the surface orientation is related with the
order polarization in the spontaneous tilted orientation
at the nematic-isotropic interface. Then, on the one hand,
we know that the existence of a temperature gradient gen-
erates a gradient of the scalar order parameter, namely,−→∇S ≡ γ

−−→∇T , [18,19], where γ ≡ dS/dT is in general a
function of r. On the other hand, the fact that in our
system there is a nematic-isotropic interface which sep-
arates a tilted nematic state from the isotropic droplet,
suggests to use Barbero et al theory to describe the effects
of the heating on the order parameter and on the direc-
tor´s orientation. With this approach in mind, we then
may say that the temperature gradient induces a scalar
order parameter gradient, approximately parallel to Eopt,
and which in turn generates an order electric polarization,
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P ord. Taking into account (8), this polarization may then
be written as

P ord ≡ f0γ

[(

n̂ · dT

dr
r̂

)

n̂− 1
3

dT

dr
r̂

]

, (19)

where f0 is the order effect coefficient [17] and r̂ is the
unit vector in the radial direction. Using thermodynamic
arguments Barbero et al showed that f0 is of the same
order of magnitude as the flexoelectric coefficients of a
nematic.

The contributions to the total Helmholtz free energy F
will be the following. First, the usual elastic free energy
density, felas, of the form

felas =
K

2

[

(∇ · n̂)2 + (∇× n̂)2
]

, (20)

where K ≡ K1 = K2 = K3 is the elastic constant in the
equal constants approximation. Then the contribution due
to the applied external fields, felec, is

felec = −1
2
[εopt

a (1 + ζ)E2
o sin2 θ + εstat

a E2
s cos2 θ], (21)

where εopt
a and εstat

a denote, respectively, the dielectric
anisotropies for the optical and low frequency fields. They
have the form εa ≡ ε‖ − ε⊥ where ε‖, ε⊥ denote the di-
electric constants parallel and perpendicular to the long
axis of the molecules. ζ is the amplification factor due to
the Janossy effect associated with the dichroic ink and
takes into account the additional torque provided by the
dye doped liquid crystal. Finally, if we restrict ourselves
to contributions quadratic in both fields, the order electric
polarization energy density is given by

fac
ord =

1
2
P ord ·Eac. (22)

From the expression for P ord, equation (19), the explicit
form of fac

ord is found to be

fac
ord = f0γ(r)

dT

dr
sin 2θ (23)

and therefore

F =
∫

V

(felas + felec + fac
ord)d

−→r . (24)

Note that fac
ord is proportional to |E2

opt|2through ∂T/∂z,
since in the heating equation (10) the source of the tem-
perature profile is the optical field. If an explicit coupling
of P ord with the total field Eac +Eopt were allowed, it
would generate cubic terms in the fields which are higher
order terms beyond the quadratic approximation we are
considering. The fact that thermal effects are important,
as we have taken into account by the order polarization
term fac

ord, makes plausible to consider condensation free
energy terms arising from a Landau-de Gennes expansion
in a power series of the order parameter. However, fol-
lowing Barbero et al., we have restricted our model up

to second powers of the order parameter to describe the
coupling between order parameter, director and external
fields. A Landau-de Gennes type of analysis would allow
us to elucidate theoretically whether or not a phase tran-
sition exists, but in this work that assumption is taken
for granted on the basis of the experimental observations
already described.

As is usual in the description of reorientation in thin
films, we now assume that the reorientation between the
initial and final equilibrium orientational configurations is
a relaxation process of the form

∂θ(z, r, φ, t)
∂t

= −1
η

δF

δθ
, (25)

where φ is the azimuthal angle, η is the orientational vis-
cosity and δF/δθ stands for the variational derivative of F .
From the corresponding Euler-Lagrange equation we find
that for this model the reorientation equation, which rep-
resents the torque balance in the system, turns out to be

∂θ

∂t
= D∇2θ +

1
2
g (r) sin 2θ + h (r) cos 2θ, (26)

where D ≡ K/η is the ratio between the elastic constant K
and the orientation viscosity η. The functions and g (r)
and h (r) are given, respectively, by

g(r) ≡ η−12
[

Γ (r)− E2
s εas

]

, (27)

with
Γ (r) ≡ E2

oe−( r
σ )2

, (28)

and
h (r) ≡ η−12γ(r)

∂T

∂r
. (29)

Note that in this expression both, the function, γ(r) =
dS/dT and the magnitude of the temperature gradient
∂T/∂r, are unknown functions of r. In the next section we
propose an approximate approach to solve equation (26)
which allows us to estimate both functions.

4 Approximate separable solutions

In order to determine the r dependence of h (r), the un-
known function γ(r) has to be modeled according to the
type of solution of equation (26) that we look for. From
here on we shall restrict ourselves to describe only the
early stages of the reorientation process where θ remains
small (θ ≈ 0) and therefore equation (26) reduces to

∂θ

∂t
= D∇2θ + g (r) θ + h (r) . (30)

In principle, the boundary conditions at z = ±l/2 allow
for a variety of possible solutions of this equation. How-
ever, as a consequence of the asymmetry of the system, the
experimental results show that the observed diffraction
pattern presents an angular dependence which is nearly
independent of the radius. This suggests that the angular
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dependence of the solution is independent of the radial
part and therefore it is reasonable to propose a separable
solution of the form

θ(r, z, ϕ, t) = v(z)w(r)u(φ, t). (31)

Consequently, equation (30) becomes

∂u

∂t
=

D

r2

∂2u

∂ϕ2
+

Du

v

d2v

d z2

+
Du

w

d2w

dr2
+

Du

rw

dw

dr
+ g (r) u +

h (r)
vw

. (32)

This equation has no exact solutions for v(z), w (r) and
u (ϕ, t). Nevertheless, approximate meaningful solutions
can be obtained if we introduce two assumptions which
indirectly take into account the presence of the thermal
gradient. The first one is to consider that the value of the
parameter D = K/η decreases as the temperature rises
when r → 0, in such a way that D = k0r

2, with k0 a
positive constant. This assumption is supported by the
fact that for the temperature variations involved in the
experiment, the viscosity η remains practically constant,
whereas the elastic constant K decreases with tempera-
ture. Since Figure 3 shows that approximately T ∼ r−2

for r > σ/2, it follows that D ∼ r2. The second assump-
tion stems from the observation that h (r) is a decreasing
function of r, which drops as the thermal gradient van-
ishes, and w(r) must also drop as r → ∞. Consequently,
as a first approximation we rewrite h (r) defined by equa-
tion (29), in the form h (r) = h0k0w(r), with h0 a con-
stant. These two assumptions might seem rather strin-
gent and, therefore, they should be validated a posteriori
by comparing the predictions of this model with direct
experimental observations.

Using the two assumptions mentioned above, equa-
tion (32) takes the form:

1
u

∂u

∂t
− k0

u

∂2u

∂ϕ2
− h0k0

uv
=

k0r
2

v

d2v

dz2

+
k0r

2

w

d2w

dr2
+

k0r

w

dw

dr
+ g (r) , (33)

which implies that v (z) is necessarily a constant whose
value can be set equal to one. Taking into account that v =
1, it can be seen that the l.h.s. of equation (34) depends
only on ϕ and t, whereas the r.h.s. depends only on r, and
consequently each member must be equal to a constant.
If this constant is written in the form k0m

2, equation (33)
implies that u(ϕ, t) and w(r) are defined, respectively, by
the following equations

k−1
0

∂u

∂t
=

∂2u

∂ϕ2
+ m2u + h0, (34)

r2 d2w

dr2
+ r

dw

dr
− [

m2 − k−1
0 g (r)

]

w = 0. (35)

Owing to the Gaussian nature of the laser beam, far from
its center g(r) tends to a constant value, which can be

written as k0g0. Therefore, for r > σ, the last equa-
tion (35) can be approximated as

r2 d2w

dr2
+ r

dw

dr
− L2w = 0, (36)

where L2 ≡ m2 − g0. As we shall see in the following,
from equations (34) and (36) we can infer some of the
observed features of the behavior of the diffraction pattern
discussed in the previous section.

Let us consider the time-independent solutions first.
From equation (34) it follows that in the stationary
states u(ϕ) is described by the equation

d2u

dϕ2
= − d

du

(

1
2
m2u2 + h0u

)

, (37)

which can be visualized as the equation of motion (with ϕ
in the role of time) of a particle of unitary mass moving
under the action of a quadratic potential. Since the general
solution of this equation is

u(ϕ) =
c1

m2
sin(mϕ) +

c1

m2
cos(mϕ)− h0

m2
(38)

with ci ∈ R, the director’s orientation will be a periodic
function of the azimuthal angle ϕ and it will present 2m
extrema within the interval 0 < ϕ < 2π.

Concerning the radial equation (36), it is clear that
there are two linearly independent solutions of the form rL

and r−L. The linear combinations of these solutions [i.e.,
functions of the form w(r) = a1r

L + a2r
−L, with ai ∈ R]

diverge for r → 0 and/or r → ∞, and so they are not
physically acceptable since they are not consistent with
the initial hypothesis that θ = v(z)w(r)u(ϕ, t) remains
small. However, if we widen the solution universe of equa-
tion (34) and we take into consideration weak solutions
with discontinuous derivatives, we can arrive at physically
meaningful solutions. To this end we must observe that
equation (35) accepts continuous solutions with discon-
tinuous derivatives (peaked solutions) at a point r0 only
if the following jump condition is satisfied

[w′′] = − 1
r0

[w′] , (39)

where [w′] denotes the change in the value of the
derivative w′(r) as we cross the point r0, i.e., [w′] ≡
lim
ε→0

[w′(r0 + ε)− w′(r0 − ε)], and [w′′] is similarly defined.

Peaked solutions of equation (35) which do not diverge at
r = 0 nor at r = ∞, can be constructed in the following
way

w(r) = a H(r0 − r) rL + b H (r − r0) r−L, (40)

where a, b, r0 ∈ R and H(r) is the Heaviside unit func-
tion. This function is continuous at r0, satisfies the jump
condition (39) if b = a r 2L

0 and preserves the ring struc-
ture of the pattern if L ∼ 3.5. It should be recalled
that we have assumed that h (r) = h0k0w(r) and that,
on the other hand, from equation (29) we know that
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Fig. 4. Shape of the function for m = 4, L = 3.5, ...

Fig. 5. Same as in Figure 4 for m = 6, ....

h (r) ≡ η−12γ(r)dT
dr . Then, from equations (29) and (40)

we can determine γ(r). In the following we shall see that
a solution of the form (40) is consistent with the observed
diffraction patterns. Note that equations (38) and (40) im-
ply that the equation (33), which describes the behavior
of the director´s orientation, has approximate stationary
solutions with the following structure

θ(r, φ) = w(r)u(φ) =
[

c0

m2
sin (mφ)− h0

m2

]

× [

a H (r0 − r)) rL + b H (r − r0) r−L
]

. (41)

The form of this function for L = 3.5, r0 = 4, a = 0.1,
b = a r 2L

0 , c0 = m2, h0/c0 = 1.2 , m = 4 and m = 6 is
shown, respectively, in Figures 4 and 5.

When a laser beam crosses orientational structures
like those seen in Figures 4 and 5, Fraunhofer diffraction
patterns are produced. These patterns are given by the
Fourier transform of the function (41). In particular, the
Fourier transform of the function presented in Figure 4 can
be seen in Figure 6. This figure exhibits two outstanding
features: a set of nearly circular concentric rings, and su-
perimposed to these rings a structure which resembles the
vanes of a windmill. As the diffraction patterns observed
in the laboratory really presented both of these features,
the approximate equation (32) and its proposed separable
solution (31) are indeed able to catch some of the essentials
of the nematic´s dynamic diffraction pattern behavior.

Fig. 6. Fourier transform (i.e., the diffraction pattern) of the
function shown in Figure 4.

Now let us consider the time-dependent solutions.
Equation (34) has nonstationary solutions of the form:

u(ϕ, t) =
c1

m2
e−pm(ϕ−ωt) sin [qm (ϕ− ωt)]− h0

m2
, (42)

where p = ω/ (2k0m), q =
(

1− p2
)1/2 and c1 is a con-

stant which depends on the initial conditions. This func-
tion is not periodic in ϕ, which is physically unacceptable.
However, if we restrict the domain of this function to the
interval 0 < ϕ < 2π, and we impose the necessary bound-
ary condition ϕ(0, t) = ϕ(2π, t), the following condition is
obtained:

ω2 = 4k 2
0

(

m2 − n2
)

, (43)
where 1 ≤ n ≤ m is an integer. This equation is interest-
ing: it implies that the frequency can be positive or nega-
tive, and it has a maximum value ωmax = 2k0(m2 − 1)1/2

which depends on the parameter m (the number of vanes
in the windmill-structure seen in the diffraction pattern).
If n = m the frequency is zero and we recover an station-
ary solution of the form (38). Since the parameter k0 was
introduced through the approximation D (r) = k0r

2, and
for r > σ/2 we expect D (r) to have a value close to K/η, a
reasonable upper bound for k0 is 4K0/σ2η, thus implying
that ωmax = 8K0(m2 − 1)1/2/σ2η, or equivalently:

νmax ≡ ωmax

2π
=

4K0

πσ2η
(m2 − 1)1/2. (44)

If we take, for example, σ = 31 µm, η = 4×10−7 poise and
K = 10−11 N (which are typical values for the viscosity
and the elastic constant of a liquid crystal), equation (44)
implies that νmax = 3.3

(

m2 − 1
)1/2 Hz. In particular, if

m = 2, this maximum frequency turns out to be νmax =
5.7 Hz, which quite is of the same order of magnitude than
the value found in the laboratory, νexp = 2.58 Hz.

5 Discussion

In this work we have proposed a model to analyze some
of the effects induced on the diffraction pattern produced
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by the simultaneous action of an optical and an AC elec-
tric field on a thin, doped nematic film in the SR regime.
The basic physical mechanism underlying the model is
the heating produced by the laser beam and its interplay
with the reorientation process of the director. It should be
stressed once again that our model is restricted to consid-
ering free energy densities quadratic in the applied fields.
Also, since according to the experimental observations an
isotropic phase is present for r ≤ σ, the consideration of an
expansion of the Landau-de Gennes type is unnecessary.

We proposed a heating model to describe the temper-
ature profile in the stationary state and introduced two
assumptions: one concerning the radial dependence of D
and the other one specifying the behavior of h(r) which
amounted to model γ(r). These assumptions allowed us
to set up a closed reorientation equation which admits
separable solutions. This solution predicts an angular ve-
locity of the pattern that is in quite a good agreement
with our measured value of the same quantity. On the one
hand, this agreement suggests that the proposed picture
of thermally induced tilted nematic domains surrounding
the isotropic droplet, is a plausible physical model; on the
other hand, it validates the two specific and rather strin-
gent assumptions on the behavior of h(r) made in Sec-
tion 3. Once h (r) = h0k0w(r) is determined, γ(r) can be
obtained from equation (29). Since to our knowledge the
function γ(r) has not been measured, this way of deter-
mining it was convenient and consistent.

To our knowledge, the existence of the observed dy-
namic regimes in the dynamic diffraction pattern de-
scribed here has not been reported before in the literature.
Perhaps the reason is that fields producing comparable
torques had not been used so far.

Clearly, it is essential to point out that it is necessary
to characterize in a better and more precise way the nu-
merous and complex phenomena involved in the behavior
of the pattern, such as the hydrodynamic backflows which
are inevitably produced during the reorientation process;
or the hysteresis in the response, the linear and non linear
dye absorption effects, etc., all of which have been entirely
neglected in this preliminary model in spite of their obvi-
ous importance. Also, a more detailed study to character-
ize experimentally the other observed dynamic regimes is
needed.

R.F.R. acknowledges partial financial support from grant
DGAPA-UNAM IN108006 and from FENOMEC through
grant CONACYT 400316-5-G25427E, Mexico.
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13. I. Jánossy, T. Kósa, Mol. Cryst. Liq. Cryst. 207, 189
(1991)

14. H.S. Carlslaw, T.C. Jaeger, Conduction of Heat in Solids
(U. P. Oxford, Oxford, 1959)

15. R.B. Meyer, Phys. Rev. Lett. 22, 319 (1969)
16. J. Prost, J.P. Marcerou, J. Phys. (Paris) 38, 315 (1977)
17. G. Barbero, I. Dozov, J.F. Palierne, G. Durand, Phys. Rev.

Lett. 56, 2056 (1986)
18. I.C. Khoo, S.T. Wu, Optics and Nonlinear Optics of Liquid

Crystals (World Scientific, Singapore, 1993)
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